

Hauptmerkmale

- Auflösung:

kompakte und robuste Industrieausführung
Schnittstelle: INTERBUS Remote-Bus
ENCOM-Profil: K3 (programmierbar)

- Gehäuse: 58 mm ∅

- Welle: 6 oder 10 mm \varnothing , Hohl- 15 mm \varnothing

max. 25 Bit = 33.554.432

Schritte bei 4.096 Umdrehungen

- Code: Binär

Programmierbare Parameter

- Drehrichtung (Complement)
- Gesamtauflösung
- Presetwert
- Offset
- Nullpunktverschiebung
- Ausgabe der Parameterwerte
 - Geschwindigkeit
 - Nockenfunktionen
- Optional: Ausgabe der Temperatur

Aufbau Mechanik

- Flansch und Gehäuse aus Alu, bzw. Messing
- Welle aus nichtrostendem Stahl
- Präzisionskugellager mit Deck- bzw. Dichtscheiben
- Codescheibe aus bruchsicherem und formbeständigem Kunststoff

Aufbau Elektronik

- temperaturunempfindliches IR-Opto-Empfänger-ASIC mit integrierter Signalaufbereitung
- 400 Millionen Schreibzyklen
- Automatische Endeerkennung
- hochintegrierte Schaltung in SMD-Technologie
- Verpolungsschutz
- Schutz vor Überspannungsspitzen

Technische Daten

Elektrische Daten

Versorgungsspannung	10 - 30 V DC (absolute Grenzwerte) *	
Leistungsaufnahme	max. 3,5 Watt	
EMV	EN 61000-6-2 (Störaussendung), EN 61000-6-4 (Störfestigkeit)	
Schnittstelle	Line-Driver nach RS 485 galvanisch getrennt durch Optokoppler	
Baudrate	500 kBaud oder 2MBaud	
Teilungsgenauigkeit	± ½ LSB	
Schrittfrequenz LSB	max. 800kHz (gültiger Codewert)	
Lebensdauer elektrisch	> 10 ⁵ h	
Anschluss	9 pol. Rundstecker	

^{*} Versorgungsspannung nach EN 50 178 (Schutzkleinspannung)

Mechanische Daten

Gehäuse	Aluminium, optional Edelstahl
Lebensdauer	Abhängig von Ausführung, Wellenbelastung – siehe Tabelle
Maximale Wellenbelastung	Axial 40 N, radial 110 N
Trägheitsmoment des Rotors	≤ 30 gcm ²
Reibungsmoment	≤ 3 Ncm (Ausführungen ohne Wellendichtring)
Drehzahl (Dauerbetrieb)	max. 12.000 min ⁻¹
Schockfestigkeit (EN 60068-2-27)	≤ 30 g (Halbsinus, 11 ms)
Dauerschock (EN 60028-2-29)	≤ 10 g (Halbsinus, 16 ms)
Schwingfestigkeit (EN 60068-2-6)	≤ 10 g (10 Hz 1000 Hz)
Masse (Ausführung Standard)	Singleturn: ca. 500 g
	Multiturn: ca. 560 g

Flansch	Synchro (S)		Klemm (C)	Hohlwelle (B)	
Wellendurchmesser	6 mm	10 mm	10 mm	15 mm	
Wellenlänge	10 mm	20mm	20 mm	-	
Welleneindringtiefe min. / max.	-	-	/ = /	15 mm / 30 mm	

Minimale Lebensdauer mechanisch

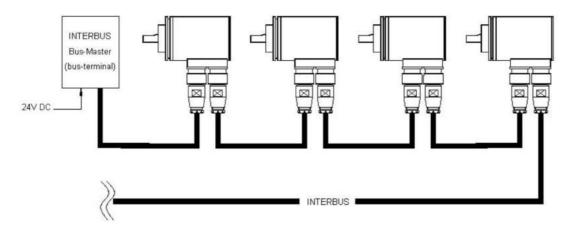
Flanschbaugruppe	Lebensdauer in 10 ⁸ Umdrehungen bei F _a / F _r		
	40 N / 60 N	40 N / 80 N	40 N / 110 N
C10 (Klemmflansch 10 x 20)	247	104	40
S10 (Synchroflansch 10 x 20)	262	110	42
S6 (Synchroflansch 6 x 10) ohne Wellendichtung	822	347	133

S6 (Synchroflansch 6 x 10) mit Wellendichtung: maximal 20 N axial, 80 N radial

Umgebungsbedingungen

Arbeitstemperaturbereich	- 0 +60°C
Lagertemperaturbereich	- 40 + 85 °C
Relative Luftfeuchtigkeit	98 % (ohne Betauung)
Schutzart (EN 60529)	Gehäuseseite: IP 65
	Wellenseite: IP 64 (optional mit Wellendichtring: IP66)

Schnittstelle


Installation

Der Winkelcodierer wird über zwei Leitungen angeschlossen. Die Busleitung und Spannungsversorgung wird über einen 9 poligen Stecker in den Geber hinein und über einen zweiten Stecker aus dem Geber herausgeführt. Um ein Vertauschen der beiden Leitungen zu vermeiden, wurde jeweils ein Stift- (Eingang) und ein Buchseneinsatz (Ausgang) verwendet. Die Adressierung des Gebers ergibt sich aus seiner physikalischen Lage im Netzwerk. Der OCD ist als Fernbusmodul mit bis zu 32 I/O Daten konzipiert. Die Prozess-Istwerte belegen im Master (Steuerung) eine bzw. zwei Wortadressen für Profil K1 respektive K2 und K3.

Stift (IB-In)	Signal	Buchse(IB-Out)
1	DO	1
2	DO	2
3	DI	3
4	DI	4
5	Masse	5
6	Schutzleiter	6
7	+ 10-30 V DC	7
8	GND (0V)	8
9	NC	9

IB-Kopplung	Klasse	max. Bit	Progr.	Anzahl Worte	ID-Code	
2000an 54.53					Binär	hex
Remotebus	K1	16	nein	1 IN	0000 0001 0011 0110	0136
Remotebus	K2	32	nein	2 IN	0000 0010 0011 0110	0236
Remotebus	КЗ	32	ia	2 IN + 2 OUT	0000 0010 0011 0111	0237

Anschluss am 2-Leiter Fernbus

www.abjoedden.de info@abjoedden.de a.b.jödden gmbh Fon 0049 2151 516259 0 Europark Fichtenhain A 13a, 47807 Krefeld

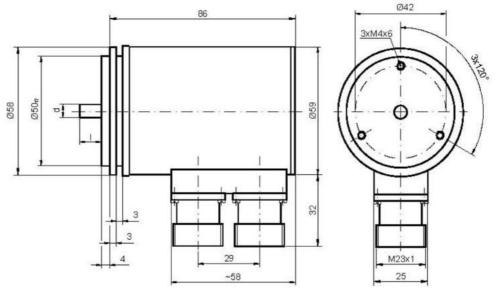
Programmierbare Parameter

Die INTERBUS Schnittstelle des Absolutwertgebers unterstützt die Profilklassen K1, K2 und die programmierbare Version nach K3 der ENCOM*. So lassen sich folgende Encoderparameter mit Profil K3 direkt über den Busverkehr programmieren:

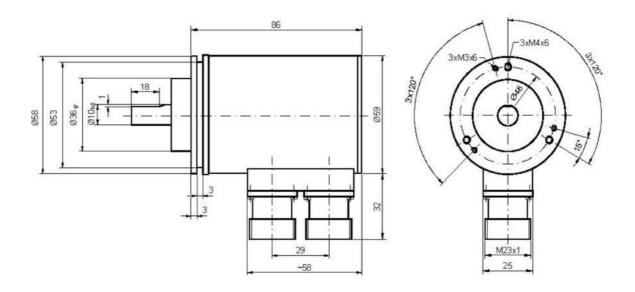
Betriebsparameter	Als Betriebsparameter kann die Drehrichtung (Complement) parametriert werden. Dieser Parameter bestimmt die Drehrichtung, in die der Ausgabecode steigen bzw. fallen soll.
Auflösung: Schritte auf u.a. Anzahl Umdrehungen	Dieser Parameter gibt die gewünschte Anzahl der Messschritte auf die unten angegebene Anzahl der Umdrehungen an.
Anzahl der Umdrehungen (bezogen auf die Auflösung)	Dieser Parameter bestimmt auf wie viel Umdrehungen sich die Auflösung bezieht. Z.B. Auflösung=8, Umdrehungen=2 bedeutet, dass nun die Auflösung 4 Schritte/Umdrehung beträgt. Es wird immer die gesamte Anzahl der Umdrehungen ausgegeben, d.h. beim Multi-Turn 4.096.
Presetwert	Der Presetwert ist der gewünschte Positionswert, der bei einer bestimmten physikalischen Stellung der Achse erreicht sein soll. Über den Parameter Presetwert wird der Positions-Istwert auf den gewünschten Prozess-Istwert gesetzt.
Nullpunktverschiebung	Als weitere Korrektur des Prozess-Istwertes kann die Nullpunktver- schiebung den Encoder-Nullpunkt zum Anlagen-Nullpunkt definieren.
Geschwindigkeit	Optional kann anstelle der Positionsausgabe die momentane Winkel- geschwindigkeit angezeigt werden.
Ausgabe der Parameterwerte bzw. der Temperatur	Optional können über den Bus alle parametrierbaren Werte aus dem Winkelcodierer ausgelesen werden. Als zusätzliche Option kann ein Temperatursensor eingebaut werden, dessen Werte über den Bus ausgelesen werden können.
Nockenfunktionen	Im Winkelcodierer integriert sind vollständig über den Bus programmierbare Nockenfunktionen mit 64 Nocken in 8 Programmen.

(*) ENCOM: Nutzergruppe der Encoderhersteller im INTERBUS Club.

Ausgabestand: 11/03 D Info OCD IB Seite 5



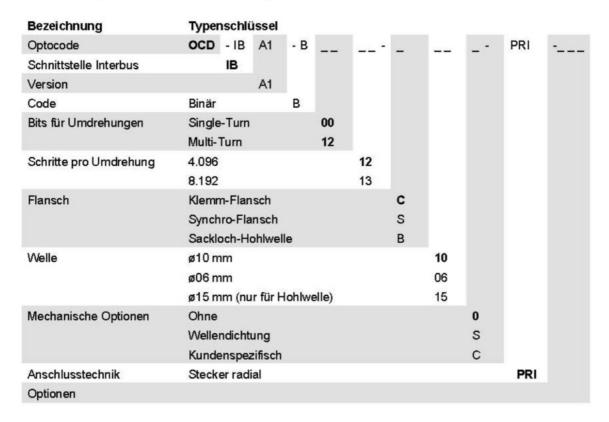
Mechanische Zeichnungen


Synchroflansch

Zwei Ausführungen lieferbar

Synchro-Flansch	d [mm]	I [mm]	
Version S06	ø6 _{f6}	10	
Version S10	ø10 _{h8}	20	

Klemmflansch



www.abjoedden.de info@abjoedden.de a.b.jödden gmbh Fon 0049 2151 516259 0 Europark Fichtenhain A 13a, 47807 Krefeld

Ausführungen / Bestellbezeichnung

Standard = fett, weitere Ausführungen auf Anfrage

Zubehör und Dokumentation

Bezeichnung		Тур
Gegenstecker	9 poliger Rundstecker, Stifteinsatz	0SG-S
Gegenstecker	9 poliger Rundstecker, Buchseneinsatz	0SG-B
Wellenkupplung **	Bohrung: 10 mm	GS 10
	Bohrung: 6 mm	GS 06
Spannscheiben **	4 Stück / AVVC	SP 15
Spannhalbringe **	2 Stück / AWC	SPH
Reduzierring ***	15 mm auf 12 mm	RR12
Reduzierring ***	15 mm auf 10 mm	RR10
Reduzierring ***	15 mm auf 8 mm	RR8
Benutzerhandbuch *	Installations- und Konfigurationsanleitung für Interbus, deutsch	UMD-IB
Benutzerhandbuch *	Installations- und Konfigurationsanleitung für Interbus, englisch	UME-IB
Parametrieroberfläche*	für Phoenix PC-Masterkarten	DK-IB

** Für Hohlwellenausführungen nicht erforderlich.

*** Nur für Hohlwellenausführungen

Druckfehler, Irrtümer bei technischen Angaben und technische Änderungen vorbehalten.

